Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-mclane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).
Christmas, M. J., Breed, M. F. & Lowe, A. J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 17, 305–320 (2016).
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biol 8, e1000357 (2010).
Ofori, B. Y., Stow, A. J., Baumgartner, J. B. & Beaumont, L. J. Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Sci. Rep. 7, 12979 (2017).
Tournebize, R. et al. Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (Coffea canephora ). Global Change Biol. 28, 4124–4142 (2022).
Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (Mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).
Fitzpatrick, M. C., Chhatre, V. E., Soolanayakanahally, R. Y. & Keller, S. R. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Mol. Ecol. Resour. 21, 2749–2765 (2021).
Capblancq, T. & Forester, B. R. Redundancy analysis: A Swiss Army Knife for landscape genomics. Methods Ecol. Evol. 12, 2298–2309 (2021).
Aquino, S. O. et al. Adaptive potential of Coffea canephora from Uganda in response to climate change. Mol. Ecol. 31, 1800–1819 (2022).
Brauer, C. J. et al. Natural hybridization reduces vulnerability to climate change. Nat. Climat. Changehttps://doi.org/10.1038/s41558-022-01585-1 (2023).
Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 1–3 (2017).
Hofmann, G. S. et al. The Brazilian Cerrado is becoming hotter and drier. Global Change Biol. 27, 4060–4073 (2021).
Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Ko¨ppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11(5), 1633–1644 (2007).
Hoffmann, W. A. et al. Ecological thresholds at the savanna-forest boundary: How plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15, 759–768 (2012).
de Lima, R. A. F. et al. How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys. Biodivers. Conserv. 24, 2135–2148 (2015).
Eisenlohr, P. V. & de Oliveira-Filho, A. T. Revisiting patterns of tree species composition and their driving forces in the Atlantic forests of southeastern Brazil. Biotropica 47, 689–701 (2015).
Hoffmann, W. A., Orthen, B. & Vargas Do Nascimento, P. K. Comparative fire ecology of tropical savanna and forest trees. Funct. Ecol. 17, 720–726 (2003).
Warwick, M. C. & Lewis, G. P. Revision of Plathymenia (LEGUMINOSAE – MIMOSOIDEAE ). Edinburgh J Bot 60, 111–119 (2003).
Heringer, E. P. O gênero Plathymenia. Anais da Sociedade Botânica do Brasil 7, 55–64 (1956).
Lemos-Filho, J. P. D., Goulart, M. F. & Lovato, M. B. Populational approach in ecophysiological studies: The case of Plathymenia reticulata, a tree from Cerrado and Atlantic Forest. Braz. J. Plant Physiol. 20, 205–216 (2008).
Lorenzi, H. Árvores Brasileiras-Vol. 03-2. edição Nova Odessa. SP: Instituto Plantarum. (2002)
Felfili, J. M. & Silva Júnior, M. C. da. Floristic composition, phytosociology and comparison of cerrado and gallery forests at Fazenda Água Limpa, Federal District, Brazil. In Nature and dynamics of forest-savanna boundaries (1992).
de Medeiros, M. B. Fitossociologia de um trecho de Cerrado sensu stricto na Bacia do Rio Corumbá—área de influência direta do aproveitamento hidrelétrico Corumbá IV (GO).
Assunção, S. L. & Felfili, J. M. Fitossociologia de um fragmento de cerrado sensu stricto na APA do Paranoá, DF, Brazil. Acta Bot. Bras. 18, 903–909 (2004).
Fernandes, M. H., Zoch, V. P., Mata, R. A. & Walter, B. M. T. Fitossociologia do componente arbóreo e florística de um remanescente de cerrado sentido restrito contíguo a áreas de agricultura na porção leste do Distrito Federal, Brasil. Heringeriana 7, 7–31 (2014).
Goulart, M. F., Lemos-Filho, J. P. D. & Lovato, M. B. Variability in fruit and seed morphology among and within populations of Plathymenia (Leguminosae – Mimosoideae) in areas of the Cerrado, the Atlantic Forest, and transitional sites. Plant Biol. 8, 112–119 (2006).
Goulart, M. F., Lemos-Filho, J. P. D. & Lovato, M. B. Phenological variation within and among populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic Forest and transitional sites. Ann. Bot. 96, 445–455 (2005).
Goulart, M. F., Lovato, M. B., de Vasconcellos Barros, F., Valladares, F. & Lemos-Filho, J. P. D. Which extent is plasticity to light involved in the ecotypic differentiation of a tree species from savanna and forest ?. Biotropica 43, 695–703 (2011).
Toledo, M. M., Paiva, E. A. S., Lovato, M. B. & Lemos-Filho, J. P. D. Stem radial increment of forest and savanna ecotypes of a Neotropical tree: Relationships with climate, phenology, and water potential. Trees Struct. Funct. 26, 1137–1144 (2012).
Maracahipes, L. et al. How to live in contrasting habitats? Acquisitive and conservative strategies emerge at inter- and intraspecific levels in savanna and forest woody plants. Perspect. Plant Ecol. Evol. Syst. 34, 17–25 (2018).
Muniz, A. C. et al. Hybrid zone of a tree in a Cerrado/Atlantic Forest ecotone as a hotspot of genetic diversity and conservation. Ecol. Evol. 12, 1–20 (2022).
Muniz, A. C. et al. Genomic signatures of ecological divergence between savanna and forest populations of a neotropical tree. Ann. Bot.https://doi.org/10.1093/aob/mcad120 (2023).
World Conservation Monitoring Centre. 1998. Plathymenia foliolosa. The IUCN Red List of Threatened Species 1998: e.T33970A9817719. Accessed on 18 August 2024; https://doi.org/10.2305/IUCN.UK.1998.RLTS.T33970A9817719.en
Botanic Gardens Conservation International (BGCI) & IUCN SSC Global Tree Specialist Group. 2019. Plathymenia reticulata. The IUCN Red List of Threatened Species 2019: e.T62027353A149012494. Accessed 18 Aug 2024; https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T62027353A149012494.en
Colombo, A. F. & Joly, C. A. Brazilian Atlantic Forest lato sensu: The most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 70, 697–708 (2010).
Scarano, F. R. & Ceotto, P. Brazilian Atlantic forest: Impact, vulnerability, and adaptation to climate change. Biodivers. Conserv. 24, 2319–2331 (2015).
Amarasinghe, P., Barve, N., Kathriarachchi, H., Loiselle, B. & Cellinese, N. Niche dynamics of Memecylon in Sri Lanka: Distribution patterns, climate change effects, and conservation priorities. Ecol. Evol. 11, 18196–18215 (2021).
Wijerathne, I. L. et al. Distribution status and influence of climate change on patterns of distribution of hornbills in Sri Lanka. Glob. Ecol. Conserv. 51, e02903 (2024).
Sarkar, D. & Talukdar, G. Predicting the impact of future climate changes and range-shifts of Indian hornbills (family: Bucerotidae). Ecol. Inform. 74, 101987 (2023).
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).
O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Kc, S. & Lutz, W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).
Ribeiro, P. C. C., de Lemos-Filho, J. P., Buzatti, R. S. D. O., Lovato, M. B. & Heuertz, M. Species-specific phylogeographical patterns and Pleistocene east-west divergence in Annona (Annonaceae) in the Brazilian Cerrado. Bot. J. Linnean Soc. 181, 21–36 (2016).
Buzatti, R. S. D. O., Lemos-Filho, J. P. D., Bueno, M. L. & Lovato, M. B. Multiple Pleistocene refugia in the Brazilian cerrado: Evidence from phylogeography and climatic niche modelling of two Qualea species (Vochysiaceae). Bot. J. Linnean Soc. 185, 307–320 (2017).
Buzatti, R. S. D. O. et al. Genetic and historical colonization analyses of an endemic savanna tree, Qualea grandiflora, reveal ancient connections between Amazonian savannas and Cerrado Core. Front. Plant Sci. 9, 981 (2018).
Souza, H. A. V. E. et al. A large historical refugium explains spatial patterns of genetic diversity in a Neotropical savanna tree species. Ann. Botany 119, 239–252 (2017).
Novaes, R. M. L., Lemos-Filho, J. P. D., Ribeiro, R. A. & Lovato, M. B. Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Mol. Ecol. 19, 985–998 (2010).
Muniz, A. C. et al. Genetic data improve the assessment of the conservation status based only on herbarium records of a Neotropical tree. Sci. Rep. 9, 5693 (2019).
Cantidio, L. S. & Souza, A. F. Aridity, soil and biome stability influence plant ecoregions in the Atlantic Forest, a biodiversity hotspot in South America. Ecographyhttps://doi.org/10.1111/ecog.04564 (2019).
Françoso, R. D. et al. Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers. Conserv. 29, 1477–1500 (2020).
Souza, C. R. et al. Local-scale tree community ecotones are distinct vegetation types instead of mixed ones: A case study from the Cerrado-Atlantic forest ecotonal region in Brazil. Aust. J. Bot. 68, 153 (2020).
Costa, T. R. et al. Vulnerability of the cerrado-atlantic forest ecotone in the espinhaço range biosphere reserve to climate change. Theor. Appl. Climatol. 151, 1151–1170 (2023).
Chamberlain, S. et al. Rgbif: Interface to the Global Biodiversity Information Facility API. (2023).
Zizka, A. et al. CoordinateCleaner : Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Thuiller, W. et al. Package ‘biomod2’. Species distribution modeling within an ensemble forecasting framework (2016).
Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. block CV : An r package for generating spatially or environmentally separated folds for k -fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).
Hijmans, R. J. et al. Package ‘terra’. Maintainer: Vienna, Austria (2022).
Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble platform for species distribution modeling. R package version 2, r560 (2013).
Hernangómez, D. Tidyterra: Tidyverse Methods and Ggplot2 Helpers for Terra Objects (2023). https://doi.org/10.5281/zenodo.6572471.
Souza, H. A. V. E., Muller, L. A., Brandão, R. L. & Lovato, M. B. Isolation of high quality and polysaccharide-free DNA from leaves of Dimorphandra mollis (Leguminosae), a tree from the Brazilian Cerrado. Genet. Mol. Res. 11, 756–764 (2012).
Novaes, R. M. L., Rodrigues, J. G. & Lovato, M. B. An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. Genet. Mol. Res. 8, 86–96 (2009).
Legendre, P. & Andersson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).
Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis: Test of canonical axes in RDA. Methods Ecol. Evol. 2, 269–277 (2011).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4. https://CRAN.R-project.org/package=vegan (2017).
Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27, 2215–2233 (2018).
Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).