• Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-mclane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christmas, M. J., Breed, M. F. & Lowe, A. J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 17, 305–320 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biol 8, e1000357 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ofori, B. Y., Stow, A. J., Baumgartner, J. B. & Beaumont, L. J. Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Sci. Rep. 7, 12979 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tournebize, R. et al. Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (Coffea canephora ). Global Change Biol. 28, 4124–4142 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (Mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).

    Article 

    Google Scholar
     

  • Fitzpatrick, M. C., Chhatre, V. E., Soolanayakanahally, R. Y. & Keller, S. R. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Mol. Ecol. Resour. 21, 2749–2765 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capblancq, T. & Forester, B. R. Redundancy analysis: A Swiss Army Knife for landscape genomics. Methods Ecol. Evol. 12, 2298–2309 (2021).

    Article 

    Google Scholar
     

  • Aquino, S. O. et al. Adaptive potential of Coffea canephora from Uganda in response to climate change. Mol. Ecol. 31, 1800–1819 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Brauer, C. J. et al. Natural hybridization reduces vulnerability to climate change. Nat. Climat. Changehttps://doi.org/10.1038/s41558-022-01585-1 (2023).

    Article 

    Google Scholar
     

  • Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 1–3 (2017).

    Article 

    Google Scholar
     

  • Hofmann, G. S. et al. The Brazilian Cerrado is becoming hotter and drier. Global Change Biol. 27, 4060–4073 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Ko¨ppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11(5), 1633–1644 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Hoffmann, W. A. et al. Ecological thresholds at the savanna-forest boundary: How plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15, 759–768 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • de Lima, R. A. F. et al. How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys. Biodivers. Conserv. 24, 2135–2148 (2015).

    Article 

    Google Scholar
     

  • Eisenlohr, P. V. & de Oliveira-Filho, A. T. Revisiting patterns of tree species composition and their driving forces in the Atlantic forests of southeastern Brazil. Biotropica 47, 689–701 (2015).

    Article 

    Google Scholar
     

  • Hoffmann, W. A., Orthen, B. & Vargas Do Nascimento, P. K. Comparative fire ecology of tropical savanna and forest trees. Funct. Ecol. 17, 720–726 (2003).

    Article 

    Google Scholar
     

  • Warwick, M. C. & Lewis, G. P. Revision of Plathymenia (LEGUMINOSAE – MIMOSOIDEAE ). Edinburgh J Bot 60, 111–119 (2003).

    Article 

    Google Scholar
     

  • Heringer, E. P. O gênero Plathymenia. Anais da Sociedade Botânica do Brasil 7, 55–64 (1956).


    Google Scholar
     

  • Lemos-Filho, J. P. D., Goulart, M. F. & Lovato, M. B. Populational approach in ecophysiological studies: The case of Plathymenia reticulata, a tree from Cerrado and Atlantic Forest. Braz. J. Plant Physiol. 20, 205–216 (2008).

    Article 

    Google Scholar
     

  • Lorenzi, H. Árvores Brasileiras-Vol. 03-2. edição Nova Odessa. SP: Instituto Plantarum. (2002)

  • Felfili, J. M. & Silva Júnior, M. C. da. Floristic composition, phytosociology and comparison of cerrado and gallery forests at Fazenda Água Limpa, Federal District, Brazil. In Nature and dynamics of forest-savanna boundaries (1992).

  • de Medeiros, M. B. Fitossociologia de um trecho de Cerrado sensu stricto na Bacia do Rio Corumbá—área de influência direta do aproveitamento hidrelétrico Corumbá IV (GO).

  • Assunção, S. L. & Felfili, J. M. Fitossociologia de um fragmento de cerrado sensu stricto na APA do Paranoá, DF, Brazil. Acta Bot. Bras. 18, 903–909 (2004).

    Article 

    Google Scholar
     

  • Fernandes, M. H., Zoch, V. P., Mata, R. A. & Walter, B. M. T. Fitossociologia do componente arbóreo e florí­stica de um remanescente de cerrado sentido restrito contí­guo a áreas de agricultura na porção leste do Distrito Federal, Brasil. Heringeriana 7, 7–31 (2014).

    Article 

    Google Scholar
     

  • Goulart, M. F., Lemos-Filho, J. P. D. & Lovato, M. B. Variability in fruit and seed morphology among and within populations of Plathymenia (Leguminosae – Mimosoideae) in areas of the Cerrado, the Atlantic Forest, and transitional sites. Plant Biol. 8, 112–119 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Goulart, M. F., Lemos-Filho, J. P. D. & Lovato, M. B. Phenological variation within and among populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic Forest and transitional sites. Ann. Bot. 96, 445–455 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goulart, M. F., Lovato, M. B., de Vasconcellos Barros, F., Valladares, F. & Lemos-Filho, J. P. D. Which extent is plasticity to light involved in the ecotypic differentiation of a tree species from savanna and forest ?. Biotropica 43, 695–703 (2011).

    Article 

    Google Scholar
     

  • Toledo, M. M., Paiva, E. A. S., Lovato, M. B. & Lemos-Filho, J. P. D. Stem radial increment of forest and savanna ecotypes of a Neotropical tree: Relationships with climate, phenology, and water potential. Trees Struct. Funct. 26, 1137–1144 (2012).

    Article 

    Google Scholar
     

  • Maracahipes, L. et al. How to live in contrasting habitats? Acquisitive and conservative strategies emerge at inter- and intraspecific levels in savanna and forest woody plants. Perspect. Plant Ecol. Evol. Syst. 34, 17–25 (2018).

    Article 

    Google Scholar
     

  • Muniz, A. C. et al. Hybrid zone of a tree in a Cerrado/Atlantic Forest ecotone as a hotspot of genetic diversity and conservation. Ecol. Evol. 12, 1–20 (2022).

    Article 

    Google Scholar
     

  • Muniz, A. C. et al. Genomic signatures of ecological divergence between savanna and forest populations of a neotropical tree. Ann. Bot.https://doi.org/10.1093/aob/mcad120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Conservation Monitoring Centre. 1998. Plathymenia foliolosa. The IUCN Red List of Threatened Species 1998: e.T33970A9817719. Accessed on 18 August 2024; https://doi.org/10.2305/IUCN.UK.1998.RLTS.T33970A9817719.en

  • Botanic Gardens Conservation International (BGCI) & IUCN SSC Global Tree Specialist Group. 2019. Plathymenia reticulata. The IUCN Red List of Threatened Species 2019: e.T62027353A149012494. Accessed 18 Aug 2024; https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T62027353A149012494.en

  • Colombo, A. F. & Joly, C. A. Brazilian Atlantic Forest lato sensu: The most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 70, 697–708 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scarano, F. R. & Ceotto, P. Brazilian Atlantic forest: Impact, vulnerability, and adaptation to climate change. Biodivers. Conserv. 24, 2319–2331 (2015).

    Article 

    Google Scholar
     

  • Amarasinghe, P., Barve, N., Kathriarachchi, H., Loiselle, B. & Cellinese, N. Niche dynamics of Memecylon in Sri Lanka: Distribution patterns, climate change effects, and conservation priorities. Ecol. Evol. 11, 18196–18215 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wijerathne, I. L. et al. Distribution status and influence of climate change on patterns of distribution of hornbills in Sri Lanka. Glob. Ecol. Conserv. 51, e02903 (2024).


    Google Scholar
     

  • Sarkar, D. & Talukdar, G. Predicting the impact of future climate changes and range-shifts of Indian hornbills (family: Bucerotidae). Ecol. Inform. 74, 101987 (2023).

    Article 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kc, S. & Lutz, W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro, P. C. C., de Lemos-Filho, J. P., Buzatti, R. S. D. O., Lovato, M. B. & Heuertz, M. Species-specific phylogeographical patterns and Pleistocene east-west divergence in Annona (Annonaceae) in the Brazilian Cerrado. Bot. J. Linnean Soc. 181, 21–36 (2016).

    Article 

    Google Scholar
     

  • Buzatti, R. S. D. O., Lemos-Filho, J. P. D., Bueno, M. L. & Lovato, M. B. Multiple Pleistocene refugia in the Brazilian cerrado: Evidence from phylogeography and climatic niche modelling of two Qualea species (Vochysiaceae). Bot. J. Linnean Soc. 185, 307–320 (2017).

    Article 

    Google Scholar
     

  • Buzatti, R. S. D. O. et al. Genetic and historical colonization analyses of an endemic savanna tree, Qualea grandiflora, reveal ancient connections between Amazonian savannas and Cerrado Core. Front. Plant Sci. 9, 981 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souza, H. A. V. E. et al. A large historical refugium explains spatial patterns of genetic diversity in a Neotropical savanna tree species. Ann. Botany 119, 239–252 (2017).

    Article 

    Google Scholar
     

  • Novaes, R. M. L., Lemos-Filho, J. P. D., Ribeiro, R. A. & Lovato, M. B. Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Mol. Ecol. 19, 985–998 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Muniz, A. C. et al. Genetic data improve the assessment of the conservation status based only on herbarium records of a Neotropical tree. Sci. Rep. 9, 5693 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantidio, L. S. & Souza, A. F. Aridity, soil and biome stability influence plant ecoregions in the Atlantic Forest, a biodiversity hotspot in South America. Ecographyhttps://doi.org/10.1111/ecog.04564 (2019).

    Article 

    Google Scholar
     

  • Françoso, R. D. et al. Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers. Conserv. 29, 1477–1500 (2020).

    Article 

    Google Scholar
     

  • Souza, C. R. et al. Local-scale tree community ecotones are distinct vegetation types instead of mixed ones: A case study from the Cerrado-Atlantic forest ecotonal region in Brazil. Aust. J. Bot. 68, 153 (2020).

    Article 

    Google Scholar
     

  • Costa, T. R. et al. Vulnerability of the cerrado-atlantic forest ecotone in the espinhaço range biosphere reserve to climate change. Theor. Appl. Climatol. 151, 1151–1170 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chamberlain, S. et al. Rgbif: Interface to the Global Biodiversity Information Facility API. (2023).

  • Zizka, A. et al. CoordinateCleaner : Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article 

    Google Scholar
     

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Article 
    ADS 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).


    Google Scholar
     

  • Thuiller, W. et al. Package ‘biomod2’. Species distribution modeling within an ensemble forecasting framework (2016).

  • Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. block CV : An r package for generating spatially or environmentally separated folds for k -fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).

    Article 

    Google Scholar
     

  • Hijmans, R. J. et al. Package ‘terra’. Maintainer: Vienna, Austria (2022).

  • Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble platform for species distribution modeling. R package version 2, r560 (2013).


    Google Scholar
     

  • Hernangómez, D. Tidyterra: Tidyverse Methods and Ggplot2 Helpers for Terra Objects (2023). https://doi.org/10.5281/zenodo.6572471.

  • Souza, H. A. V. E., Muller, L. A., Brandão, R. L. & Lovato, M. B. Isolation of high quality and polysaccharide-free DNA from leaves of Dimorphandra mollis (Leguminosae), a tree from the Brazilian Cerrado. Genet. Mol. Res. 11, 756–764 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novaes, R. M. L., Rodrigues, J. G. & Lovato, M. B. An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. Genet. Mol. Res. 8, 86–96 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Legendre, P. & Andersson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).

    Article 

    Google Scholar
     

  • Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis: Test of canonical axes in RDA. Methods Ecol. Evol. 2, 269–277 (2011).

    Article 

    Google Scholar
     

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4. https://CRAN.R-project.org/package=vegan (2017).

  • Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27, 2215–2233 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Comments are closed.