Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).
Julian, P. R. & Chervinc, R. M. A study of the southern oscillation and Walker circulation phenomenon. Mon. Weather Rev. 106, 1433–1451 (1978).
Espinoza, J. C., Segura, H., Ronchail, J., Drapeau, G. & Gutierrez‐Cori, O. Evolution of wet‐day and dry‐day frequency in the western amazon basin: relationship with atmospheric circulation and impacts on vegetation. Water Resour. Res. 52, 8546–8560 (2016).
van der Lubbe, H. J. L. et al. Indo-Pacific Walker circulation drove pleistocene African aridification. Nature 598, 618–623 (2021).
Zhao, S. & Cook, K. H. Influence of walker circulations on East African rainfall. Clim. Dyn. 56, 2127–2147 (2021).
Huang, X. et al. The recent decline and recovery of indian summer monsoon rainfall: relative roles of external forcing and internal variability. J. Clim. 33, 5035–5060 (2020).
Wang, B., Liu, J., Kim, H.-J., Webster, P. J. & Yim, S.-Y. Recent change of the global monsoon precipitation (1979–2008). Clim. Dyn. 39, 1123–1135 (2011).
Webster, P. J. et al. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res.: Oceans 103, 14451–14510 (1998).
Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J. R. & Mohren, G. M. J. El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol. Evol. 16, 89–94 (2001).
Phillips, J. G., Cane, M. A. & Rosenzweig, C. ENSO, seasonal rainfall patterns and simulated maize yield variability in Zimbabwe. Agric. Meteorol. 90, 39–50 (1998).
Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).
Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).
Park, C.-E. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).
Rojas, M., Lambert, F., Ramirez-Villegas, J. & Challinor, A. J. Emergence of robust precipitation changes across crop production areas in the 21st century. Proc. Natl Acad. Sci. USA. 116, 6673–6678 (2019).
Ying, J. et al. Emergence of climate change in the tropical Pacific. Nat. Clim. Change 12, 356–364 (2022).
Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).
Wang, X. & Liu, H. PDO modulation of ENSO effect on tropical cyclone rapid intensification in the western North Pacific. Clim. Dyn. 46, 15–28 (2015).
Bayr, T., Dommenget, D., Martin, T. & Power, S. B. The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Clim. Dyn. 43, 2747–2763 (2014).
England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).
McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).
Tanaka, H. L., Ishizaki, N. & Kitoh, A. Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus 56, 250–269 (2004).
Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).
Wu, M. et al. A very likely weakening of Pacific Walker circulation in constrained near-future projections. Nat. Commun. 12, 6502 (2021).
Ma, S. & Zhou, T. Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: a comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Clim. 29, 3097–3118 (2016).
Plesca, E., Grützun, V. & Buehler, S. A. How robust is the weakening of the pacific walker circulation in CMIP5 idealized transient climate simulations? J. Clim. 31, 81–97 (2018).
Sohn, B. J., Yeh, S.-W., Schmetz, J. & Song, H.-J. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim. Dyn. 40, 1721–1732 (2012).
Lindzen, R. S. & Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1987).
Vergados, P., Ao, C. O., Mannucci, A. J. & Kursinski, E. R. Quantifying the tropical upper tropospheric warming amplification using radio occultation measurements. Earth Space Sci. 8, e2020EA001597 (2021).
Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased C02 in a coupled ocean-atmosphere model. J. Clim. 8, 2181–2199 (1995).
Heede, U. K., Fedorov, A. V. & Burls, N. J. Time scales and mechanisms for the tropical Pacific response to global warming: a tug of War between the ocean thermostat and Weaker Walker. J. Clim. 33, 6101–6118 (2020).
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
Fedorov, A. V. & Burls, N. J. What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: the role of cloud Albedo. J. Clim. 27, 2757–2778 (2014).
Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).
Heede, U. K. & Fedorov, A. V. Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Clim. Change 11, 696–703 (2021).
Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).
Bony, S. et al. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci. 6, 447–451 (2013).
Jeevanjee, N. Three rules for the decrease of tropical convection with global warming. J. Adv. Model. Earth Syst. 14, e2022MS003285 (2022).
Jenney, A. M., Randall, D. A. & Branson, M. Understanding the response of tropical ascent to warming using an energy balance framework. J. Adv. Model. Earth Syst. 12, e2020MS002056 (2020).
Silvers, L. G., Reed, K. A. & Wing, A. A. The Response of the large‐scale tropical circulation to warming. J. Adv. Model. Earth Syst. 15, e2021MS002966 (2023).
Betts, A. K. Climate-convection feedbacks: some further issues. Clim. Change 39, 35–38 (1998).
Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: implications for projections. J. Clim. 28, 20–35 (2015).
Li, G. & Ren, B. Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979–2001. Theor. Appl. Climatol. 107, 59–72 (2011).
Bordbar, M. H., Martin, T., Latif, M. & Park, W. Role of internal variability in recent decadal to multidecadal tropical Pacific climate changes. Geophys. Res. Lett. 44, 4246–4255 (2017).
DiNezio, P. N., Vecchi, G. A. & Clement, A. C. Detectability of changes in the Walker circulation in response to global warming*. J. Clim. 26, 4038–4048 (2013).
Han, W. et al. Decadal variability of the Indian and Pacific Walker cells since the 1960s: do they covary on decadal time scales? J. Clim. 30, 8447–8468 (2017).
Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).
Luo, J. J., Sasaki, W. & Masumoto, Y. Indian ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012).
Power, S. B. & Kociuba, G. What caused the observed twentieth-century weakening of the Walker circulation? J. Clim. 24, 6501–6514 (2011).
Zhang, L. et al. Indian ocean warming trend reduces pacific warming response to anthropogenic greenhouse gases: an interbasin thermostat mechanism. Geophys. Res. Lett. 46, 10882–10890 (2019).
Chung, E.-S. et al. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. Change 9, 405–412 (2019).
Collins, M. et al. The impact of global warming on the tropical Pacific ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).
Heede, U. K. & Fedorov, A. V. Colder eastern equatorial pacific and stronger Walker circulation in the early 21st century: separating the forced response to global warming from natural variability. Geophys. Res. Lett. 50, e2022GL101020 (2023).
Watanabe, M., Iwakiri, T., Dong, Y. & Kang, S. M. Two competing drivers of the recent Walker circulation trend. Geophys. Res. Lett. 50, e2023GL105332 (2023).
Kang, S. M., Shin, Y., Kim, H., Xie, S. P. & Hu, S. Disentangling the mechanisms of equatorial Pacific climate change. Sci. Adv. 9, eadf5059 (2023).
Watanabe, M. et al. Possible shift in controls of the tropical Pacific surface warming pattern. Nature 630, 315–324 (2024).
Kim, H., Kang, S. M., Kay, J. E. & Xie, S. P. Subtropical clouds key to southern ocean teleconnections to the tropical Pacific. Proc. Natl Acad. Sci. USA 119, e2200514119 (2022).
Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Change 12, 228–231 (2022).
Chen, L., Li, T., Yu, Y. & Behera, S. K. A possible explanation for the divergent projection of ENSO amplitude change under global warming. Clim. Dyn. 49, 3799–3811 (2017).
Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).