• Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Julian, P. R. & Chervinc, R. M. A study of the southern oscillation and Walker circulation phenomenon. Mon. Weather Rev. 106, 1433–1451 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Espinoza, J. C., Segura, H., Ronchail, J., Drapeau, G. & Gutierrez‐Cori, O. Evolution of wet‐day and dry‐day frequency in the western amazon basin: relationship with atmospheric circulation and impacts on vegetation. Water Resour. Res. 52, 8546–8560 (2016).

    Article 
    ADS 

    Google Scholar
     

  • van der Lubbe, H. J. L. et al. Indo-Pacific Walker circulation drove pleistocene African aridification. Nature 598, 618–623 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhao, S. & Cook, K. H. Influence of walker circulations on East African rainfall. Clim. Dyn. 56, 2127–2147 (2021).

    Article 

    Google Scholar
     

  • Huang, X. et al. The recent decline and recovery of indian summer monsoon rainfall: relative roles of external forcing and internal variability. J. Clim. 33, 5035–5060 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, B., Liu, J., Kim, H.-J., Webster, P. J. & Yim, S.-Y. Recent change of the global monsoon precipitation (1979–2008). Clim. Dyn. 39, 1123–1135 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Webster, P. J. et al. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res.: Oceans 103, 14451–14510 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J. R. & Mohren, G. M. J. El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol. Evol. 16, 89–94 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, J. G., Cane, M. A. & Rosenzweig, C. ENSO, seasonal rainfall patterns and simulated maize yield variability in Zimbabwe. Agric. Meteorol. 90, 39–50 (1998).

    Article 

    Google Scholar
     

  • Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, C.-E. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rojas, M., Lambert, F., Ramirez-Villegas, J. & Challinor, A. J. Emergence of robust precipitation changes across crop production areas in the 21st century. Proc. Natl Acad. Sci. USA. 116, 6673–6678 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ying, J. et al. Emergence of climate change in the tropical Pacific. Nat. Clim. Change 12, 356–364 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).

    Article 

    Google Scholar
     

  • Wang, X. & Liu, H. PDO modulation of ENSO effect on tropical cyclone rapid intensification in the western North Pacific. Clim. Dyn. 46, 15–28 (2015).

    Article 

    Google Scholar
     

  • Bayr, T., Dommenget, D., Martin, T. & Power, S. B. The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Clim. Dyn. 43, 2747–2763 (2014).

    Article 

    Google Scholar
     

  • England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article 
    ADS 

    Google Scholar
     

  • McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tanaka, H. L., Ishizaki, N. & Kitoh, A. Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus 56, 250–269 (2004).

    Article 

    Google Scholar
     

  • Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M. et al. A very likely weakening of Pacific Walker circulation in constrained near-future projections. Nat. Commun. 12, 6502 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, S. & Zhou, T. Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: a comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Clim. 29, 3097–3118 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Plesca, E., Grützun, V. & Buehler, S. A. How robust is the weakening of the pacific walker circulation in CMIP5 idealized transient climate simulations? J. Clim. 31, 81–97 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sohn, B. J., Yeh, S.-W., Schmetz, J. & Song, H.-J. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim. Dyn. 40, 1721–1732 (2012).

    Article 

    Google Scholar
     

  • Lindzen, R. S. & Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Vergados, P., Ao, C. O., Mannucci, A. J. & Kursinski, E. R. Quantifying the tropical upper tropospheric warming amplification using radio occultation measurements. Earth Space Sci. 8, e2020EA001597 (2021).

  • Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased C02 in a coupled ocean-atmosphere model. J. Clim. 8, 2181–2199 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Heede, U. K., Fedorov, A. V. & Burls, N. J. Time scales and mechanisms for the tropical Pacific response to global warming: a tug of War between the ocean thermostat and Weaker Walker. J. Clim. 33, 6101–6118 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Fedorov, A. V. & Burls, N. J. What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: the role of cloud Albedo. J. Clim. 27, 2757–2778 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Heede, U. K. & Fedorov, A. V. Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Clim. Change 11, 696–703 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bony, S. et al. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci. 6, 447–451 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jeevanjee, N. Three rules for the decrease of tropical convection with global warming. J. Adv. Model. Earth Syst. 14, e2022MS003285 (2022).

  • Jenney, A. M., Randall, D. A. & Branson, M. Understanding the response of tropical ascent to warming using an energy balance framework. J. Adv. Model. Earth Syst. 12, e2020MS002056 (2020).

  • Silvers, L. G., Reed, K. A. & Wing, A. A. The Response of the large‐scale tropical circulation to warming. J. Adv. Model. Earth Syst. 15, e2021MS002966 (2023).

  • Betts, A. K. Climate-convection feedbacks: some further issues. Clim. Change 39, 35–38 (1998).

    Article 

    Google Scholar
     

  • Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: implications for projections. J. Clim. 28, 20–35 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Li, G. & Ren, B. Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979–2001. Theor. Appl. Climatol. 107, 59–72 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Bordbar, M. H., Martin, T., Latif, M. & Park, W. Role of internal variability in recent decadal to multidecadal tropical Pacific climate changes. Geophys. Res. Lett. 44, 4246–4255 (2017).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N., Vecchi, G. A. & Clement, A. C. Detectability of changes in the Walker circulation in response to global warming*. J. Clim. 26, 4038–4048 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Han, W. et al. Decadal variability of the Indian and Pacific Walker cells since the 1960s: do they covary on decadal time scales? J. Clim. 30, 8447–8468 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, J. J., Sasaki, W. & Masumoto, Y. Indian ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Power, S. B. & Kociuba, G. What caused the observed twentieth-century weakening of the Walker circulation? J. Clim. 24, 6501–6514 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. et al. Indian ocean warming trend reduces pacific warming response to anthropogenic greenhouse gases: an interbasin thermostat mechanism. Geophys. Res. Lett. 46, 10882–10890 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chung, E.-S. et al. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. Change 9, 405–412 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Collins, M. et al. The impact of global warming on the tropical Pacific ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heede, U. K. & Fedorov, A. V. Colder eastern equatorial pacific and stronger Walker circulation in the early 21st century: separating the forced response to global warming from natural variability. Geophys. Res. Lett. 50, e2022GL101020 (2023).

  • Watanabe, M., Iwakiri, T., Dong, Y. & Kang, S. M. Two competing drivers of the recent Walker circulation trend. Geophys. Res. Lett. 50, e2023GL105332 (2023).

  • Kang, S. M., Shin, Y., Kim, H., Xie, S. P. & Hu, S. Disentangling the mechanisms of equatorial Pacific climate change. Sci. Adv. 9, eadf5059 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, M. et al. Possible shift in controls of the tropical Pacific surface warming pattern. Nature 630, 315–324 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H., Kang, S. M., Kay, J. E. & Xie, S. P. Subtropical clouds key to southern ocean teleconnections to the tropical Pacific. Proc. Natl Acad. Sci. USA 119, e2200514119 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Change 12, 228–231 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chen, L., Li, T., Yu, Y. & Behera, S. K. A possible explanation for the divergent projection of ENSO amplitude change under global warming. Clim. Dyn. 49, 3799–3811 (2017).

    Article 

    Google Scholar
     

  • Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Comments are closed.